首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9493篇
  免费   2227篇
  国内免费   2213篇
测绘学   252篇
大气科学   3804篇
地球物理   2350篇
地质学   3068篇
海洋学   1318篇
天文学   204篇
综合类   616篇
自然地理   2321篇
  2024年   24篇
  2023年   128篇
  2022年   324篇
  2021年   417篇
  2020年   450篇
  2019年   476篇
  2018年   428篇
  2017年   490篇
  2016年   500篇
  2015年   527篇
  2014年   670篇
  2013年   1040篇
  2012年   679篇
  2011年   649篇
  2010年   589篇
  2009年   660篇
  2008年   701篇
  2007年   657篇
  2006年   605篇
  2005年   584篇
  2004年   444篇
  2003年   429篇
  2002年   360篇
  2001年   318篇
  2000年   297篇
  1999年   243篇
  1998年   218篇
  1997年   205篇
  1996年   166篇
  1995年   153篇
  1994年   119篇
  1993年   109篇
  1992年   86篇
  1991年   48篇
  1990年   37篇
  1989年   24篇
  1988年   31篇
  1987年   9篇
  1986年   17篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1979年   4篇
  1978年   2篇
  1977年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
陈爽  陈新军 《海洋学报》2020,42(10):100-109
东北大西洋是世界上重要的捕捞海域,气候变化对该海域捕捞产生了重要的影响。本文基于联合国粮农组织所提供的1982?2016年东北大西洋渔获产量数据,对该海域渔获物组成、多样性、平均营养级及主成分变化特征进行时间序列上的分析,并结合东北大西洋海域气候、环境因子,应用广义可加模型探究渔获物组成与气候变化之间的关系。结果显示:渔获物多样性的变化总体上呈下降趋势,2002?2010年间处于较低水平;平均营养级在2002年之前呈平缓下降的趋势,2002年之后开始波动上升,相关性分析表明这两个指标与海域环境因子的变化较为相关。对渔获物组成进行主成分分析显示,第一主成份变化的方差解释率达到35.3%,且与海域气候、环境因素有较高的相关性,第一主成分变化能够较好地表征气候影响下渔获物组成变化的情况。广义可加模型分析结果显示,渔获物组成变化的影响因素按解释率由高到低分别为:海表温度、海平面高度、盐度、海冰和北大西洋涛动指数。该研究有助于认识气候变化对海洋渔业资源及其结构组成的影响。  相似文献   
72.
海流的拉格朗日运动对于研究物质输送有着重要意义,拉格朗日拟序结构(LCSs)作为研究海流结构的新型方法,相比于传统欧拉方法更为客观。本文提出了一种新的计算LCSs束的方法,基于25年的平均速度场,利用变分方法计算得到黑潮区域的气候态LCSs,并通过简化合并的方法得到了气候态LCSs束,该LCSs束能够突出地显示出海流特性和运输模式,其代表的平均拉格朗日环流有很强的约束作用,且具有鲁棒性。最终我们获得了气候态下12个月份的流场结构图,揭示了月周期性拉格朗日环流规律。本文还利用虚拟粒子输运、多年浮标轨迹以及气候态温盐异常3种方法进行了验证,与拉格朗日运输模式相吻合,证明了海流拉格朗日拟序结构的准确性和可靠性。  相似文献   
73.
为研究全球变暖与极寒天气间的关系,对加拿大13个省代表性测站10年的观测数据进行时空变化趋势分析,采用经验正交函数(EOF)寻找海洋表面温度历史数据的变化规律。另外利用BP神经网络建立了年平均温度、日降水量与地球吸热、散热、海表面温度、当地纬度间的关系,预测未来25年气候的变化,并建立了“极寒天气”与气候变化的关系模型。研究表明:高纬度地区温度、降水量普遍较低,同经度地区的温度差异较小且降水量变化不大;加拿大地区温度呈周期性变化,符合北半球的季节变化特征;北大西洋的东部与其他海洋的温度是反相关的,西太平洋南北回归线附近的海洋表面温度升高;“极寒天气”出现频率与气候变化有一定关系,局地极寒现象与全球变暖的大趋势并不矛盾。本研究为人们认识和理解“全球变暖”提供了一个新的思路。  相似文献   
74.
为了优化蛏苗集约化平面流中间培育技术,研究了不同进水流速和苗种规格对缢蛏中间培育效果的影响,并分析了集约化平面流中间培育系统的水质状况。结果显示,不同进水流速对缢蛏稚贝生长影响显著,稚贝生长速率随进水流速增加而增加,但成活率下降。通过流速与成活率和体质量日增生长量的线性回归分析,估算0.163L/s为适宜的进水流速。在适宜流速和相同放苗重量下,大规格苗种(8万粒/kg)生长速度显著高于小规格苗种(18万粒/kg),但因为小规格组放苗数量多,小规格组单位面积质量较其高出23.72%。除低流速组以外,平面流中间培育过程对叶绿素a和铵态氮有良好的去除效果,去除率分别达到36.99%和3.88%以上,这表明平面流集约化中间培育在利用海水池塘水体进行苗种中间培育的同时,也起到了池塘养殖水体的净化作用。综合认为,在养殖密度0.5kg/m^2、流速0.163 L/s的培育条件下,可以保证水体自污染程度较低,缢蛏苗种生长较快,成活率在73.12%以上。  相似文献   
75.
宜人气候可以分为避暑型和避寒型两种类型,但现有研究鲜有关注国内两类气候的分布特征及差异。本文采用1981—2010年2132个国家气象观测站数据,基于温湿指数、风寒指数和着衣指数计算各个气象站点的气候综合舒适指数,结合协同克里金空间插值方法对全国避暑型和避寒型宜人气候的分布特征进行了研究,并对两类气候的地域差异进行了分析。结果表明:① 中国避暑型气候区包括40°N以北的西北边疆和东北地区、西北中部地区及西南地区三大集中分布区。中国避寒型气候区集中分布在北回归线以南的低纬地区。② 国内夏冬两季的气候不舒适地域广阔,包括环渤海、长三角等经济发达、人口稠密地区,避暑型与避寒型气候资源的开发潜力显著。③ 两类宜人气候呈现明显的地域分离特征,拥有避暑和避寒双重属性的地方极少。④ 国内避寒型气候是稀缺资源,具有垄断性特征;而避暑型气候相对分布广泛,是一种相对遍在性资源。本文不仅丰富了宜人气候分布特征研究的理论成果,而且可为地方气候资源的旅游开发提供科学依据。  相似文献   
76.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd.  相似文献   
77.
The southeast section of Zhongdian-Daju Fault is located in the northern part of Haba and Yulong Snow Mountain, belonging to the southwestern boundary of the secondary block in northwestern Sichuan, an important boundary fault striking 310°~320° on the whole. The nature of the fault, the age of its activity and the slip rate are of great significance for the analysis of the secondary block movement in the northwestern Sichuan and the intersection relationship with the eastern piedmont fault of Yulong Mountains. Based on the 1 ︰ 5 million-scale active fault geological mapping, this paper studies in detail the stratigraphic landform, scarp landform, surface rupture, typical fault profile and river terrace along the fault. Based on the research results, we divide the southeastern section of Zhongdian-Daju Fault into two sub-segments, the Majiacun-Daju sub-segment and the Daju-Dadong sub-segment, according to the geometric structure, fault landforms and fault activity. (1)Fault scarp:In the Majiacun-Daju sub-segment, the fault parallelly controls the two sides of the Haba fault depression. It cuts the late Pleistocene moraine deposits, forming a fault scarp of about 4.5km long and(14±2)m high. The continuity of the scarp is very good, and it is also very obvious in the remote sensing image. In the Daju-Dadong sub-segment, a scarp with a height of about 2m is formed, and an optical luminescence dating sample is collected from the upper part of the gravel layer on the second-order terrace to obtain an age of(22±2.2)ka. (2)Horizontal dislocation:In the Majiacun-Daju sub-segment, through the analysis of the development of outwash fans in the area and the measurement and induction of the gully dislocations, it is considered that there are at least three stages of outwash fans developed in the area and there may be four phases of faulting. That is, the earliest-stage outwash fan and gully are horizontally dislocated about 1km; the second-stage outwash fan and gully are horizontally dislocated about 47m, and the vertical dislocation is about(14±2)m; the gully in the third stage outwash fan is horizontally dislocated twice, the first dislocation formed a beheaded gully with a dislocation of 22m, and the second formed a beheaded gully with a dislocation of 8.5m. It is further proved that the fault has strong activity since the Holocene in the Majiacun to Daju area. In the Daju-Dadong sub-segment, there are no obvious horizontal dislocations in the alluvial deposits since the Holocene. Only 3~4 gullies are found to be offset right-laterally in the ridges east of Wenhe Village, with the maximum dislocation of 210m, which may be the older phase dislocation. (3)Surface rupture:In the northwest direction of Dabazi Village on the T3 terrace in the basin between Majiacun and Daju, an earthquake surface rupture zone is found, extending in the NW direction. The rupture zone left clear traces on the about 1m-thick, hard T3 terrace surface formed by calcification of sand gravels, and the overburden either upwarps and bulges, or ruptures, generates ground fissures, or forms small pull-apart "depressions" locally. However, the rupture zone is not large in size, about 350m long, 60m wide at the widest point, and 0.3~1.5m high. It is partially en-echelon or obliquely arranged, dominated by compressive ruptures. Through observation, the possibility of artificial transformation is ruled out for these upwarping bulges, ruptures or ground fissures. The fault section is found in the southeast direction of the rupture zone. The slickensides at the section show that the fault is dominated by right-lateral strike-slip with a small amount of thrust. In the eastern sub-segment, only intermittently distributed surface ruptures are found in the northern part of the village, and the scale is small. In summary, through the field geological survey, it is found that the Majiacun-Daju sub-segment is a Holocene active segment. Though the Daju-Dadong sub-segment also offset the late Pleistocene to Holocene strata, it is considered that its Holocene activity is weak in terms of either the dislocation amount or the slip rate of this segment. By analyzing the geological and geomorphological evidences, such as fault scarps, horizontal dislocation and surface ruptures along the fault, it is considered that the Majiacun-Daju sub-segment is a right-lateral strike-slip fault with a normal faulting component, and its vertical slip rate since the late Pleistocene is(0.4~0.8)mm/a, the horizontal slip rate is 1.5~2.4mm/a. The Daju-Dadong sub-segment is dominated by right-lateral strike-slip with a normal faulting component, and its vertical slip rate since the late Late Cenozoic is 0.1mm/a. The formation of the NW-trending surface rupture zone found in the Daju Basin is very young, where there are only two major earthquakes, namely, the MS6.4 1966 Zhongdian earthquake and the 1996 Lijiang MS7.0 earthquake, and both earthquakes produced NW-oriented surface rupture zones. Therefore, it cannot be ruled out that the rupture zone is a product of the 1966 Zhongdian MS6.4 earthquake or the 1996 Lijiang MS7.0 earthquake.  相似文献   
78.
Although the effectiveness of best management practices (BMPs) in reducing urban flooding is widely recognized, the improved sustainability achieved by implementing BMPs in upstream suburban areas, reducing downstream urban floods, is still debated. This study introduces a new definition of urban drainage system (UDS) sustainability, focusing on BMP usage to enhance system performance after adaptation to climate change. Three types of hydraulic reliability index (HRI) plus robustness and improvability indices were used to quantify the potential enhanced sustainability of the system in a changing climate, together with a climate change adaptability index (CCAI). The sustainability of UDS for the safe conveyance of storm-water runoff was investigated under different land-use scenarios: No BMP, BMP in urban areas, and BMP inside and upstream of urban areas, considering climate change impacts. Rainfall–runoff simulation alongside drainage network modelling was conducted using a storm-water management model (US EPA SWMM) to determine the inundation areas for both base-line and future climatic conditions. A new method for disaggregating daily rainfall to hourly, proposed to provide a finer resolution of input rainfall to SWMM, was applied to a semi-urbanized catchment whose upstream runoff from mountainous areas may contribute to the storm-water runoff in downstream urban parts. Our findings confirm an increase in the number of inundation points and reduction in sustainability indices of UDS due to climate change. The results present an increase in UDS reliability from 4% to 16% and improvements in other sustainability indicators using BMPs in upstream suburban areas compared to implementing them in urban areas.  相似文献   
79.
Considerable debate revolves around the relative importance of rock type, tectonics, and climate in creating the architecture of the critical zone. We demonstrate the importance of climate and in particular the rate of water recharge to the subsurface, using numerical models that incorporate hydrologic flowpaths, chemical weathering, and geomorphic rules for soil production and transport. We track alterations in both solid phase (plagioclase to clay) and water chemistry along hydrologic flowpaths that include lateral flow beneath the water table. To isolate the role of recharge, we simulate dry and wet cases and prescribe identical landscape evolution rules. The weathering patterns that develop differ dramatically beneath the resulting parabolic interfluves. In the dry case, incomplete weathering is shallow and surface parallel, whereas in the wet case, intense weathering occurs to depths approximating the base of the bounding channels, well below the water table. Exploration of intermediate cases reveals that the weathering state of the subsurface is strongly governed by the ratio of the rate of advance of the weathering front itself controlled by the water input rate, and the rate of erosion of the landscape. The system transitions between these end‐member behaviours rather abruptly at a weathering front speed ‐ erosion rate ratio of approximately 1. Although there are undoubtedly direct roles for tectonics and rock type in critical zone architecture, and yet more likely feedbacks between these and climate, we show here that differences in hillslope‐scale weathering patterns can be strongly controlled by climate.  相似文献   
80.
The New England and Mid‐Atlantic regions of the Northeast United States have experienced climate‐induced increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood‐generating mechanisms operating in a basin, and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and flood plains. Changes in flood seasonality may indicate changes in flood‐generating mechanisms, and their interactions, with important implications for habitats, flood plain infrastructure, and human communities. I applied a probabilistic method for identifying flood seasons at a monthly resolution for 90 Northeast U.S. watersheds with natural, or near‐natural, flood‐generating conditions. Historical trends in flood seasonality were also investigated. Analyses were based on peaks‐over‐threshold flood records that have, on average, 85 years of data and three peaks per year—thus providing more information about flood seasonality than annual maximums. The results show rich detail about annual flood timing across the region with each site having a unique pattern of monthly flood occurrence. However, a much smaller number of dominant seasonal patterns emerged when contiguous flood‐rich months were classified into commonly recognized seasons (e.g., Mar–May, spring). The dominant seasonal patterns identified by manual classification were corroborated by unsupervised classification methods (i.e., cluster analyses). Trend analyses indicated that the annual timing of flood‐rich seasons has generally not shifted over the period of record, but 65 sites with data from 1941 to 2013 revealed increased numbers of June–October floods—a trend driving previously documented increases in Northeast U.S. flood counts per year. These months have been historically flood‐poor at the sites examined, so warm‐season flood potential has increased with possible implications for aquatic and riparian organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号